III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

ELECTRONIC INSTRUMENTATION (Common for ALL Branches)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Describe the different types of errors occur	L2	CO1	7 M			
		in measurements.						
	b)	Sketch the diagrams and explain the thermo	L3	CO2	7 M			
		couple type RF ammeter.						
	OR							
2	a)	Explain about dynamic characteristics of	L2	CO2	5 M			
		measuring instrument.						
	b)	Use a series type ohmmeter circuit diagram.	L3	CO2	9 M			
		The basic movement requires the current of						
		1.0mA for full scale deflection and has an						
		internal resistance of 50Ω . The internal						
		battery has a voltage of 3V. The desired						
		value of half scale resistance is 200Ω .						
		Calculate						
		i) The value of resistances R1 and R2.						
		ii) The range of values of R2, if the battery						
		voltage may vary from 2.7V to 3.1V.						
		Use value of R1 as Calculated in (i).						

		UNIT-II			
3	a)	Describe about fixed AF oscillator and variable AF oscillator.	L2	CO3	7 M
	b)	With the help of block diagram explain the functioning of a conventional standard	L2	CO3	7 M
		signal generator.			
4	a)	OR Describe how can a sine and square wave be	L2	CO3	7 M
•		generated using signal generator?			
	b)	Explain how Basic wave analyzer works with examples.	L2	CO3	7 M
	1	UNIT-III	<u> </u>	I	
5	a)	Draw and explain the block diagram of dual trace oscilloscope.	L2	CO4	7 M
	b)	Describe the construction and working of sampling oscilloscope.	L2	CO4	7 M
		OR			
6	a)	Explain with the block diagram how the digital frequency can be measured using counter/meter instrument.	L2	CO4	7 M
	b)	Describe in details the construction and working of an storage oscilloscope.	L2	CO4	7 M
		UNIT-IV			
7	a)	An ac bridge has the following constants: arm AB, R=1000 Ω in parallel with C = 0.159 μ F; BC, R = 1000 Ω ; CD, R = 500 Ω ; DA, C = 0.636 μ F in series with an	L3	CO3	7 M

				<u>ј</u>	
		unknown resistance. Find the frequency for			
		which this bridge is in balance and			
		determine the value of the resistance in arm			
		DA to produce this balance.			
	b)	Which bridge is used for Capacitance	L2	CO3	7 M
		measurement? Give its circuit and derive the			
		equations at balanced condition.			
		OR		11	
8	a)	Sketch the circuit diagram of a Wheatstone	L3	CO3	5 M
		bridge and derive the conditions for balance.			
	b)	Explain how Wien's bridge can be used for	L2	CO3	9 M
		experimental determination of frequency.			
		Derive the expression for frequency in terms			
		of bridge parameters.			
		UNIT-V			
9	a)	Define transducer. Explain difference	L2	CO5	7 M
		between active transducer and passive			
		transducer.			
	b)	Illustrate about the data acquisition system?	L2	CO5	7 M
		Explain the working of multichannel analog			,
		multiplexed DAS.			
		OR			
10	a)	With a neat sketch, explain the operation of	L2	CO5	7 M
10	a)	LVDT in detail.			/ 1 V1
	1-)		1.0	COF	7 1 1
	b)	Describe the operation of capacitive.	L2	CO5	7 M
		transducers.			